560=16t^2+64t+512

Simple and best practice solution for 560=16t^2+64t+512 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 560=16t^2+64t+512 equation:



560=16t^2+64t+512
We move all terms to the left:
560-(16t^2+64t+512)=0
We get rid of parentheses
-16t^2-64t-512+560=0
We add all the numbers together, and all the variables
-16t^2-64t+48=0
a = -16; b = -64; c = +48;
Δ = b2-4ac
Δ = -642-4·(-16)·48
Δ = 7168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7168}=\sqrt{1024*7}=\sqrt{1024}*\sqrt{7}=32\sqrt{7}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-32\sqrt{7}}{2*-16}=\frac{64-32\sqrt{7}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+32\sqrt{7}}{2*-16}=\frac{64+32\sqrt{7}}{-32} $

See similar equations:

| x-5=2×-8 | | -2(3h-1=5(2h-3) | | 8x^2+56x+52=0 | | -7b=35+14= | | 9k-8=16 | | 3​(x-​5)=2​(x+5) | | 3x+2(2x-1)=6 | | 3^x+2×9^5x-1=243 | | 48=9c+8c-c | | 5+8x—6x=3x+9–3x | | 7-5(x+1)=4-2(x+4) | | -1+14x+13x+17=180 | | -k-2(k+1)=-16-5k | | 7i-2=61 | | Y=-5/2x+8 | | 13.8y+262.6=28 | | 8a+69a+10=304 | | 6^(8-x)=(1)/(216) | | (X+3)-4=46-2x | | 1/2x+3=2/3x=+1 | | 3(2x-3)-x=6 | | -x-5*3=2x+18 | | q–3=7 | | A(n)=7+(n‒1)(3) | | 57=19^x | | 62-10x=6x-6 | | -5(1+1x=-50 | | 9-2(3t-13)=-7 | | 4x1=-3+2x | | (5+4x)-12=40 | | 45-10x=6x+6 | | 2x+4(x-2)=40 |

Equations solver categories